A nodal integral method for quadrilateral elements

نویسندگان

  • Erfan G. Nezami
  • Suneet Singh
  • Nahil Sobh
چکیده

1Landau Associates, 130 2nd Ave South, Edmonds, WA 98020, U.S.A. 2Civil and Environmental Engineering and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 205 North Mathews Ave Urbana, IL 61801, U.S.A. 3Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, 216 Talbot Lab, 104 S. Wright St., Urbana, IL 61801, U.S.A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Nodal Integral Method Incorporated with Irregular-shape Elements for Navier-stokes Equations

A simple isoparametric geometry mapping is applied to incorporate irregular four-node quadrilateral elements into Modified Nodal Integral Method for the two-dimensional, time-dependent, incompressible Navier-Stokes equations. The modified scheme has been applied to solve the twodimensional lid driven cavity problem with exact solution, solved over a sub-domain that necessitate non-rectangular e...

متن کامل

A performance comparison of nodal discontinuous Galerkin methods on triangles and quadrilaterals

This work presents a study on the performance of nodal bases on triangles and on quadrilaterals for discontinuous Galerkin solutions of hyperbolic conservation laws. A nodal basis on triangles and two tensor product nodal bases on quadrilaterals are considered. The quadrilateral element bases are constructed from the Lagrange interpolating polynomials associated with the Legendre–Gauss–Lobatto ...

متن کامل

Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow

We present a comprehensive assessment of nodal and hybrid modal/nodal discontinuous Galerkin (DG) finite element solutions on a range of unstructured meshes to nonlinear shallow water flow with smooth solutions. The nodal DG methods on triangles and a tensor-product nodal basis on quadrilaterals are considered. The hybrid modal/nodal DG methods utilize two different synergistic polynomial bases...

متن کامل

Control Volume Finite Element Method with Multidimensional Edge Element Scharfetter-Gummel upwinding. Part 1. Formulation

We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The formulation uses standard nodal elements for the concentrations and expands the flux in terms of the lowest-order Nedelec H(curl,Ω)-compatible finite element basis. The SG formula is applied to the edges of the elements...

متن کامل

Study on derivation of shape functions in global coordinates and exact computation of element matrices for quadrilateral finite elements

This article includes a technique to derive shape functions in global co-ordinates for general quadrilateral finite elements. It identifies clearly the element geometry for which the shape functions in global co-ordinates cannot be derived and explains the way to overcome such situation. Finally, it presents formulae based on array multiplication for exact computation of different types of elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009